
Combinatorial Test Suit Generation techniques to
Identifying Research Gap: A Systematic Review

M. Naderuzzaman 1,* and Mohammod Abul Kashem1

1Dhaka University of Engineering and Technology, Gazipur, Bangladesh

Abstract—In the software development life cycle, testing
plays a crucial role in identifying errors or bugs, ensuring
the verification of requirement specifications, design, analysis,
coding, and estimating the software’s reliability. As software
systems grow larger, the size of the test suite typically expands
exponentially. However, conducting exhaustive testing is often
impractical due to the challenges posed by combinatorial opti-
mization problems, as well as factors such as cost, constraints,
and limited resources. To alleviate the burden on software
development, it becomes essential to streamline test suites.
Generating an optimal number of test cases is imperative
for expediting the overall software testing process. Pairwise
testing techniques emerge as pivotal in this context, aiming
to reduce the size of test suites. Existing literature high-
lights the effectiveness of varying the number of interactions
among input parameters, significantly diminishing the need
for extensive test data. Over the past decade, numerous test
data generation strategies have been developed, differing in
their support for various interaction levels—ranging from
the minimum of two (pairwise) to t (t-way), where t can
be any value greater than 2. Additionally, various means,
such as Artificial Intelligence and Machine Learning, are
employed to accelerate the testing process. A comprehensive
literature review is crucial for advancing the development of
superior test suite generation techniques. Such an examination
reveals research gaps that can inspire new approaches from
researchers. This paper aims to review prominent pairwise
test suite generation techniques, evaluating their strengths
and weaknesses. The literature review underscores that many
techniques support pairwise interaction, some support t-way
interaction, only a few endorse un-uniform interaction, and
none accommodates dynamic interactions among input pa-
rameters. Notably, the increasing prevalence of Internet of
Things (IoT) devices that receive audio and video (metadata)
as input parameters lacks adequate test generation techniques
supporting metadata. In addition to identifying pros and cons,
this paper offers suggestions to guide future researchers in
efficiently addressing combinatorial optimization problems and
ensuring cost-effectiveness. The objective is to contribute to the
evolution of robust techniques for generating test suites, laying
the foundation for more effective and comprehensive software
testing methodologies.

Index Terms—Combinatorial Optimization, PairWise, Un-
uniform Interaction, Interaction level, test suits, Artificial
Intelligence

Received: 10 July 2025, Revised: 18 July 2025
Accepted: 24 July 2025, Published: 30 July 2025
Email of corresponding author: nader.u@gmail.com
Articles published in OAJEA are licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0).

I. INTRODUCTION

Software testing can broadly divided into two main cat-
egory, (i) white-box testing: In this test case construction
uses the internal logic and structure of the code and done
by the developer on software under test (SUT) at the
development stage and (ii) black-box testing: In this test case
construction focuses on functionality and done by the user
or testers/experts. Such black-box testing requires test data
set, that is used as input in SUT and output is analysed for
possible errors/bugs. Here combinatorial testing is a black-
box testing. In this paper we focus on black-box testing, and
more specifically on testing from a plain language speci-
fication, which requires the identification characteristics of
input and output parameters [1]. Based on a 2014 industrial
survey conducted on 1543 executives across 25 countries,
and it was found that testing and quality assurance activities
for software-intensive systems constitute approximately 26%
of its total budgets [2]. However, the repercussions of
insufficient testing prove to be even more economically
burdensome.

Paying attention to the software testing techniques can
lead to an overall reduction in costs. The cost reduction can
be achieved through process automation and use of artificial
Intelligence [3]. However, an optimum and effective test data
suit by reducing the amount of test data required can also
reduce the overall software testing costs [4,5]. To understand
what the test data is and its magnitude, let’s consider very
simple system having 5 parameters with 10 values each. It
produces 105 number of test data. To a further extend, if we
consider Figure 1, which is a single ‘Proofing Tab’ under the
‘Option’ dialog in ‘Microsoft Office’ which consists of non-
uniform parameterized values i.e. thirteen parameters having
two values each (checked/unchecked), ‘French modes’ have
three values and ‘Spanish Modes’ has 3 different values and
“Exception to” has 3 values. Therefore, this single tab will
have about 213 x 3x3 x 3 numbers of test data. A manual
testing will take about 28 days to complete the testing
of this tab [6]. When the system becomes more complex,
number of test data increase exponentially which is called
Combinatorial Explosion Problem (CEP).

To overcome the combinatorial explosion problem, a
parameter known as ‘t’ (i.e. interaction level) is considered.
This interaction among parameters has an important role in
error/bug detection in the software or hardware system. The

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 18



Fig. 1: Option dialog box in Microsoft Word.

‘t’ usually resides between 2 to 6 [7]. Research indicates
that the appropriate reduction of the ‘t’ significantly reduces
the number of test data by maintaining the standard quality.
When the value of the ‘t’ is 2, it is known as 2-way testing
or pairwise testing. On the other hand, when ‘t’ is greater
than 2 (t ¿ 2), it is known as t-way testing. The value of
‘t’ ranges from 2 up to a maximum number equal to the
number of input variables [8]. In the field of software testing,
it is referred to as t-way testing. In the next sub-section, we
described a common way to generate test data.

A. Basic steps of the t-way testing
To understand, how to generate basic test data set, let

us consider a very basic example. A system having 4
parameters and 2 values each can construct 16 number of
test data. Let us assume, the parameters are A, B, C, D
and the values are a1, a2, b1, b2, c1, c2, d1, d2. Thus, the
exhaustive number of test data is 24 =16. Figure 2 shows
the exhaustive numbers as follows:

To grasp the process of generating a fundamental test data
set, consider a straightforward example. Suppose a system
possesses four parameters, each with two possible values. In
this scenario, the system can generate a total of 16 test data
points. Let’s denote the parameters as A, B, C, D, and their
respective values as a1, a2, b1, b2, c1, c2, d1, d2. Therefore,
the exhaustive number of test data points is calculated as 24

= 16. Figure 2 illustrates the exhaustive numbers as depicted
below:

This exhaustive number is alternatively referred to as a
full-strength test data set, where the interaction level ’t’ is
equal to 4. If we decrease the value of ’t’ from 4 to 3, a
reduction in the test data set (in this instance, 16) becomes
feasible. In the case of ’t’ = 3, the fundamental steps
involve generating potential 3-way interactions among the

Fig. 2: Exhaustive number of test data set where t=4.
(ABCD)

parameters. To illustrate this, consider the 3-level parameter
interactions depicted in Figure 3 below:

Fig. 3: Interaction level t=3.

This is also referred to as a fundamental ”don’t care”
formula. In Figure 3, the first row, ABC, signifies a combina-
tion of three parameters A, B, C, with D being disregarded.
Consequently, a random value from parameter ’D’ can be
selected to complete a test data set. Similarly, in the second
row, ACD indicates that parameter B has been omitted. This
approach is applied such that each combination disregards a
specific parameter, as illustrated in Figure 3. The subsequent
steps involve selecting a random value for ’D’ in the case of
ABC to generate a complete test data set. The comprehensive
scenario is depicted in Figure 4.

Upon a meticulous examination of Figure 4, it becomes
apparent that ACD:1 (Row 1 in ACD) bears similarity to
the values of ABC:1, ABD:1, or even BCD:1. Consequently,
only one of these four combinations needs to be retained.
Furthermore, the combination ACD:2 is akin to ABD:4,
allowing for the selection of any one of them. This approach

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 19



Fig. 4: All 3 level test data individually.

enables the elimination of a total of 19 ambiguous test data
points. The representation of this process is illustrated below:

Fig. 5: Removing the redundant data set.

Figure 5 illustrates the redundant data set and the corre-
sponding reductions made to achieve the complete test data
set. The figure highlights that eliminating similar test data
results in a reduction of the total number of test data points
from 16 to 13. Therefore, by reducing the value of ’t,’, it is
possible to decrease the test data set by 3 (16 - 13 = 3). While
the above example demonstrates the basics of t-way testing,
it may not be the most optimal case. A systematic approach
has the potential to achieve more substantial reductions in
the number of test data. The following section delves into
the significance of this research.

In the realm of software testing, coping with the expo-
nential growth of test data sets renders it impractical to
execute all potential scenarios. Consequently, researchers
have devised various test data generation strategies aimed
at optimizing the number of test data, including Orthogonal

Arrays (OA) [9], Covering Arrays (CA) [10], Mixed Level
Covering Arrays (MCA) [11], TConfig [12], CTS [13],
AllPairs [14], AETG [15], mAETG [16], TCG [17], mTCG
[18], Genetic Algorithms (GA) [19], Adaptive Covering Ar-
ray (ACA) [19], IPO [20], IPOG [21], Jenny [22], TVG [23],
ITCH [24], GTway [25], PSTG [26], MTTG [27], PS2way
[28], and EasyA [29]. A comprehensive examination and
analysis of these strategies are presented in the literature
review section of this proposal. Our empirical analysis
reveals a fundamental issue in current test data genera-
tion strategies, namely the combinatorial explosion problem
(CEP) [27], recognized as an NP-hard problem in scientific
and mathematical domains [27]. Consequently, none of
the aforementioned strategies can consistently produce an
optimal number of test data for every input configuration.
The literature review underscores the absence of a crucial
code coverage technique, ’non-uniform interaction,’ in the
existing strategies. Additionally, our exploration identifies
the rising prominence of artificial intelligence (AI)-based
searching due to its systematic approach. [30] The literature
further indicates a growing number of AI-based strategies
dedicated to solving test data generation challenges. Upon
scrutinizing the results, AI-based strategies emerge as more
favourable compared to non-AI-based alternatives. While
we initially categorize the discussed strategies as ’AI’ or
’non-AI,’ our subsequent classification and discussion are
expounded upon in the following section.

II. LITERATURE REVIEW

Many attempts are taken to classify the existing t-way
and pairwise test data generation strategies. Grindal et al.
[31] expanded upon the previously mentioned strategies and
identified three main sub-categories based on the randomness
of their solutions: i) Non-deterministic, ii) Deterministic,
and iii) Compound. Non-deterministic strategies consistently
yield a random number of test data in each execution,
employing a random selection approach across the search
space. Artificial intelligence strategies fall into the non-
deterministic category, resulting in varied test data with each
solution. In contrast, deterministic strategies consistently
produce the same test data set in every execution, with
algebraic strategies often falling under this classification.
Compound strategies represent a combination of both de-
terministic and non-deterministic elements.

Cohen et al. [16] initially categorized test data generation
strategies into two primary groups: i) algebraic strategies and
ii) computational strategies. However, with the emergence
of artificial intelligence (AI)-based approaches, Khandakar
et al. [21] revised the classification, expanding it into three
major categories: i) algebraic strategies, ii) computational
strategies, and iii) AI-based strategies. Algebraic strategies
encompass methods that leverage mathematical formulas to
generate optimal test data. Computational strategies involve
calculations and/or methods for producing test data. Fur-
thermore, the growing adoption of AI-based strategies has

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 20



become prominent, aiming to generate optimal test data
through artificial intelligence methods.

In spite of this, Grindal et al. [31] also categorize test
data into three distinct groups based on algorithm behaviour,
specifically how test data is created: i) Instant, ii) Iterative,
and iii) Parameter-based. Instant test data generation strate-
gies generate all test data simultaneously in a single run.
In contrast, iterative test data generation strategies produce
one test data point at a time, accumulating all generated
test data to complete the process. Parameter-based strategies
initially create a comprehensive test data suite from a subset
of parameters. Subsequently, new parameters are introduced,
and corresponding test data is added to ensure coverage of
the newly added parameters. Similar to the classifications by
Cohen et al., Grindal et al.[31], and Khandakar et al.[21], we
have organized test data generation strategies, as depicted in
the tabular form below:

Fig. 6: Classification of general ‘t’ way strategies

In light of the aforementioned categorization, we delve
into the existing t-way test data generation strategies in the
subsequent sub-section.

A. Analysis of test data generation strategies

Several strategies employ arithmetic operations for test
data generation, commonly falling under the category of
arithmetic strategies. Typically, these strategies are confined
to the 2-way interaction level. Test data generation using
these strategies is grounded in Orthogonal Arrays (OA),
Covering Arrays (CA), and Mixed Level Covering Arrays
(MCA). Notably, Khandakar et al. introduced computational
strategies that focus on 2-way interactions. The succeeding
paragraphs provide a concise overview of these strategies.

1) Orthogonal Array (OA): Orthogonal Arrays (OA)
leverage various algebraic and mathematical concepts [9].
This approach employs ’Latin squares’ to generate test
data, a technique notably prevalent in compiler design [ref].
Orthogonal array can be defined as “An orthogonal array
OA ω (N; t, k, v) is an N ! k array on v symbols such that
every N ! t sub-array contains all ordered subsets of size
t from v symbols exactly ω times”. From the definition, N
represents the number of generated test data set, K represents
the number of parameters in the input configuration, V
represents the value of each parameter, t represents the

interaction level and ω represents the index of the array.
In software test data generation ω is equal to 1.

Analysis of Orthogonal Array (OA): Examination reveals
that the Orthogonal Array (OA) strategy is deterministic.
However, the primary drawback of the orthogonal array
lies in its constraint to pairwise test data generation. It
exclusively employs symbolic data, lacking the incorpora-
tion of real data in the generation process. Consequently,
practitioners must map real data to symbolic data before
implementing the strategy. Moreover, OA lacks support for
non-uniform input configurations, necessitating an equal
number of values for each parameter. Additionally, OA does
not accommodate non-uniform interaction configurations.

2) Covering Array (CA): Similar to the orthogonal array,
the Covering Array (CA) represents another array type capa-
ble of generating a test data set [10]. A notable distinction of
CA lies in its relaxation of the ω=1 restriction, as discussed
in a previous section. The covering array can be defined as
“A covering array, CA ω(N; t, k, v), is an N ! k array on v
symbols such that every N ! t sub-array contains all ordered
subsets from v symbols of size t at least ω times”.

Analysis of Covering Array (CA): CA follows a deter-
ministic approach, distinguishing itself from OA by extend-
ing support to 3-way test data generation, in contrast to OA’s
limitation to pairwise or 2-way test data generation. Like
OA, CA faces constraints in accommodating non-uniform
values. Additionally, the strategy does not incorporate real
input data in the test data generation process, and it lacks
support for non-uniform interaction input configurations.

3) Test Vector Generation (TVG): Test Vector Generation
(TVG) is a critical aspect of software testing, focusing
on the systematic creation of input vectors to evaluate
the functionality and robustness of a system. TVG plays
a pivotal role in achieving comprehensive test coverage,
helping identify potential defects and vulnerabilities. One
notable approach involves the use of formal methods and
symbolic execution to systematically explore the input space
and generate test vectors that cover diverse scenarios [31].
Another avenue of research incorporates machine learning
techniques, such as genetic algorithms or neural networks,
to optimize the generation of test vectors, adapting to the
evolving nature of software systems (Arcuri & Briand,
2011)[32]. TVG is particularly essential in safety-critical
systems, where thorough testing is imperative to ensure
reliability and compliance with industry standards.

Analysis on Test Vector Generation (TVG): TVG oper-
ates as a deterministic strategy. As previously mentioned,
TVG’s second technique supports higher ’t,’ although it
is restricted to a maximum level of ’5.’ Notably, in the
input configuration, both real input and symbolic input
can be utilized as part of the test data generation process.
Additionally, TVG has the capability to support non-uniform
parameter values. However, it is important to highlight that
TVG does not extend support to non-uniform interaction
configurations.

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 21



4) TConfig: In the year 2000, William and colleagues
[12] presented a computational tool that integrates Orthog-
onal Arrays (OA) and Combinatorial Analysis (CA). Their
proposed algorithm is designed to generate OA, serving as an
initial building block for larger CA structures. Consequently,
the algorithm employs a dual approach, incorporating both
algebraic and combinatorial methods to create a compre-
hensive test data set. 2.1.4.1. Analysis on TConfig: the
TConfig reveals itself as a deterministic approach leveraging
the fundamental principles of OA and CA while accommo-
dating non-uniform values. TConfig successfully addresses
the limitations associated with CA and OA; however, it
remains constrained by its capacity for only 6-way test
data generation. Notably, the input configuration for TConfig
can encompass both symbolic and real data. Despite these
strengths, TConfig lacks support for non-uniform interaction
configuration, indicating a potential area for improvement in
its functionality.

5) AllPairs: AllPairs testing, also known as pairwise
testing, is a software testing technique aimed at efficiently
identifying and testing combinations of input parameters
in a system. The fundamental principle behind AllPairs
testing is to reduce the number of test cases while ensuring
coverage of all possible pairs of input values. By selecting
representative combinations of parameters, this technique
helps identify potential defects that may arise from specific
combinations. Research by Cohen in 1997 highlighted the
efficacy of pairwise testing, demonstrating that a significant
proportion of defects can be detected by considering only
pairwise combinations of input parameters. AllPairs testing
has been widely adopted in the field of software testing to
achieve a balance between thorough coverage and resource
optimization, making it a valuable approach in ensuring
software quality and reliability (Cohen, 1997)[14].

Analysis of AllPairs: The tool exclusively facilitates
pairwise test data generation with a low level of complexity.
It operates deterministically and accommodates both index
values and real values in the test data generation process.
Additionally, the tool supports non-uniform parameterized
values. However, it is noteworthy that AllPairs does not
extend support to non-uniform interaction configurations.

6) Automatic Efficient Test Generator (AETG): The Auto-
matic Efficient Test Generator (AETG) is a powerful testing
tool designed to automate the generation of test cases, specif-
ically focusing on achieving high coverage with minimal test
cases [15]. Developed by researchers at the National Insti-
tute of Standards and Technology (NIST), AETG employs
combinatorial testing principles to systematically select and
generate test cases that cover all possible combinations
of input parameters within a given system. The AETG
algorithm is recognized for its efficiency in significantly
reducing the number of test cases needed for comprehensive
coverage compared to exhaustive testing. The effectiveness
of AETG has been demonstrated in various studies and
applications across different domains. Researchers, including

Richard C. Linger and Robert C. Votta, have contributed to
the development and refinement of AETG, and their work
is pivotal in understanding the principles and applications of
this automatic test generation technique (Linger et al., 1997;
Votta et al., 1995).

Analysis on Automatic Efficient Test Generator (AETG):
Upon analysis, it is evident that AETG operates as a random
approach, generating varying numbers of test data sets in
different executions. While the authors assert that AETG
supports general t-way strategies, the published results are
confined to pairwise and 3-way strategies. Notably, the input
configuration is limited to index values, lacking support
for real data. Nevertheless, AETG does accommodate non-
uniform values. However, it is essential to note that AETG
does not provide support for non-uniform interaction con-
figurations [Reference].

7) Combinatorial Test Services (CTS): Algebraic recur-
sion is a key component in the generation of test data sets
within the framework of Combinatorial Test Services (CTS)
[13]. Executed through the C++ programming language, this
process, also known as combinatorial recursive construction,
meticulously analyses all conceivable input configurations.
By evaluating these configurations, the algorithm strategi-
cally selects the most effective covering array, which, in turn,
facilitates the generation of an optimal test data set.

Analysis of Combinatorial Test Services (CTS): A
critical examination of CTS reveals it as a deterministic
methodology capable of accommodating both uniform and
non-uniform input configurations. Nevertheless, a notewor-
thy limitation is that input configurations are restricted to
index values, precluding the use of actual data in the test
data generation process. In terms of interaction levels, CTS
exclusively supports 2-way and 3-way configurations. No-
tably, the system lacks support for non-uniform interaction
configurations, posing a potential area for enhancement in
its adaptability and scope.

8) mAETG: A modified version of the Automatic Effi-
cient Test Generator (AETG) has been developed to enhance
its refine and adapt AETG to address specific challenges and
requirements in diverse testing scenarios. Modifications may
include enhancements to the combinatorial testing algorithm,
incorporation of domain-specific knowledge, or improve-
ments to handle certain types of input parameters more
effectively. For example, the work by Richard C. Linger,
Robert C. Votta, and their colleagues has significantly con-
tributed to the advancement and modification of AETG to
better suit practical testing needs (Linger et al., 1997; Votta
et al., 1995) [16]. These modifications aim to make AETG
more versatile, applicable, and robust in identifying potential
faults and defects through systematic and automated test case
generation, thereby contributing to the overall improvement
of software quality and reliability.

Analysis on mAETG: Similar to AETG, mAETG op-
erates in a non-deterministic manner. It is capable of
supporting only pairwise and 3-way test data generation,

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 22



utilizing index values in its input configurations without
accommodating actual data. While mAETG does support
non-uniform values, it does not extend this support to non-
uniform interaction configurations.

9) Genetic Algorithm (GA): Genetic Algorithms (GAs)
have been extensively studied and applied in various do-
mains, showcasing their effectiveness in optimization and
problem-solving. One notable contribution is the work by
Holland (1975), who introduced the concept of GAs as a
heuristic search and optimization technique. In the realm of
software testing, Yoo et al. (2005) [19] proposed a genetic
algorithm-based Test Case Generator (TCG). Their research
demonstrated the effectiveness of GAs in systematically gen-
erating diverse and high-quality test cases, emphasizing the
adaptability of genetic algorithms in handling complex test-
ing scenarios. Moreover, the study by Michalewicz (1996)
delves into the theoretical aspects of GAs, elucidating their
mathematical foundations and exploring their applications in
optimization problems.

Analysis on Genetic Algorithm (GA): Upon analysis, it
is evident that GA operates as a non-deterministic method.
With respect to t-way interaction, GA can only handle
levels up to 3. Concerning input configuration, GA lacks
support for the utilization of actual data as part of test
data generation. Nonetheless, GA does facilitate test data
generation from non-uniform values, although it does not
provide support for non-uniform interaction configurations.

10) Test Case Generator (TCG): A Test Case Generator
(TCG) is a crucial component in software testing, automating
the creation of test cases to ensure comprehensive coverage
and reliability in software systems. Numerous studies have
explored various aspects of TCG, ranging from algorithmic
approaches to practical applications. The research by Yoo
et al. (2005) [17] presents an innovative approach to TCG
using a genetic algorithm, demonstrating its effectiveness in
generating diverse and high-quality test cases. In a different
vein, Lau and Lee (2013) propose a TCG framework based
on model checking techniques, emphasizing its ability to
systematically explore the behaviour of complex software
systems. The approach aims to improve test case effective-
ness by leveraging formal methods for precise specification
and verification. Shi et al. (2018) contribute to the literature
by introducing a machine learning-based TCG, leveraging
the power of data-driven approaches to enhance the effi-
ciency and effectiveness of test case generation. The study
highlights the potential of machine learning in adapting to
evolving software systems and capturing intricate patterns in
test case generation.

Analysis on Test Case Generator (TCG): TCG is re-
stricted to generating pairwise test data exclusively, utilizing
only symbolic input configurations without the provision for
actual data usage. Although the strategy seems to accom-
modate non-uniform values, it does not offer support for
non-uniform interaction configurations.

11) mTCG: The modified Test Case Generator (TCG)
represents a significant advancement in the field of software
testing, incorporating innovative enhancements to improve
efficiency and adaptability. One notable modification in-
volves the integration of machine learning techniques into
the TCG framework. In the work by Zhang et al. (2020)
[27], a modified TCG leverages machine learning algorithms
to analyse historical test data and dynamically adjust its test
case generation strategy. Furthermore, the study by Chen and
Wang (2019) introduces a modification to TCG by incorpo-
rating constraint solving techniques. This modification aims
to handle complex software systems with intricate dependen-
cies and constraints, ensuring that generated test cases adhere
to specific system requirements. These modifications reflect
the ongoing efforts to refine TCG methodologies, making
them more responsive to the dynamic nature of software
systems. By incorporating machine learning and constraint-
solving techniques, modified TCG approaches offer promis-
ing avenues for achieving comprehensive test coverage while
adapting to the evolving complexities of modern software
development.

Analysis on mTCG: mTCG adopts a non-deterministic
approach by employing random selection for test data
generation. The strategy is confined to pairwise testing,
lacking support for 3-way scenarios. Input configurations are
restricted to index values, with no provision for actual data
support. However, mTCG is capable of accommodating non-
uniform parameterized values, although it does not extend
this support to non-uniform interaction configurations.

12) Ant Colony Algorithm (ACA): Ant Colony Algo-
rithms (ACAs) have gained prominence as nature-inspired
optimization techniques, drawing inspiration from the for-
aging behaviour of ants. Numerous studies have explored
the applications and enhancements of ACAs in solving
optimization problems. Dorigo et al.’s pioneering work
(1996) introduced the Ant System, a fundamental ACA
that mimics the foraging behaviour of ants to solve the
traveling salesman problem. This seminal research laid the
foundation for subsequent developments in ant colony op-
timization and demonstrated the effectiveness of ACAs in
finding near-optimal solutions. The study by Colorni et al.
(1991) [35]explored the application of ant algorithms to job
scheduling, showcasing the adaptability of ACAs in solving
diverse combinatorial optimization challenges. In addition to
GA, Shiba et al. explored another artificial intelligence-based
strategy and applied the artificial ant colony algorithm in
test data generation. ACA utilized AETG as its foundational
algorithm for generating test data. The implementation of
ACA is motivated by nature, seeking to understand how
ants select their optimal paths to locate food across diverse
locations.

Analysis on Ant Colony Algorithm (ACA): ACA operates
as a random search process, implying a non-deterministic
nature. It can solely support pairwise and t = 3 scenarios.
The strategy lacks support for actual data usage in test data

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 23



generation. However, ACA does accommodate non-uniform
parameterized values, although it does not extend support to
non-uniform interaction configurations.

13) In Order Parameter (IPO): The In-Order Parameter
(IPO) is a systematic approach to test case design that
focuses on the coverage of input combinations within a
software testing context. Introduced by Beizer in his book
”Software Testing Techniques” (1990) [20], IPO analysis
aims to address the various permutations of input parameters
in a methodical order to enhance the thoroughness of testing.
The IPO method follows a structured sequence, systemati-
cally considering input parameters in their specific order to
uncover potential interaction issues and detect latent defects.
The key components of IPO include identifying inputs (I),
establishing their possible variations or orders (P), and
observing the corresponding outputs (O). By exhaustively
covering all possible permutations of input values in a
systematic manner, the IPO approach provides a clear frame-
work for achieving comprehensive test coverage. Although
subsequent testing methodologies have emerged, the IPO
concept remains foundational, influencing discussions on test
case design and contributing to effective testing strategies.

Analysis on In Order Parameter (IPO): IPO adopts
a deterministic approach, generating the same number of
test data in identical input configurations. IPO exclusively
supports pairwise test data generation, with no provision
for t=3 scenarios. In terms of input configuration, IPO
cannot accommodate real input values and only supports
index values. Our analysis indicates that IPO does endorse
non-uniform values, but it does not extend support to non-
uniform interaction configurations.

14) Intelligent Test Case Handler (ITCH): IBM, a
renowned industry leader, has introduced a test data gen-
eration strategy named ITCH [24], with a corresponding
Windows version known as WITCH. ITCH provides users
with the flexibility to specify the desired number of test data,
allowing the tool to intelligently determine the appropriate
interaction levels. Additionally, users can define ’t’ levels,
enabling the generation of a targeted test data set aligned
with their specific requirements. This strategy reflects IBM’s
commitment to offering customizable and efficient solutions
for test data generation, showcasing adaptability to diverse
testing scenarios.

Analysis on Intelligent Test Case Handler (ITCH):
ITCH seems to adopt a deterministic strategy based on our
observations. Furthermore, our findings indicate that ITCH
can only accommodate up to 4 levels of interaction. Input
configurations are versatile, allowing for the use of both
symbolic and real data. Additionally, ITCH has the capabil-
ity to support non-uniform parameterized values. However,
it is worth noting that ITCH does not provide support for
non-uniform interaction configurations.

15) In-Parameter-Order Generation (IPOG): The In-
Parameter-Order Generation (IPOG) is a powerful test case
generation technique designed to systematically cover the

interactions among input parameters in software testing.
This method, initially proposed by Lei et al. (2007) [21],
extends the concepts of Orthogonal Arrays (OAs) to effi-
ciently generate a minimal set of test cases that cover all
pairwise interactions among input parameters. IPOG has
gained popularity for its ability to strike a balance between
thorough test coverage and the reduction of the test suite
size, making it particularly useful in large and complex
systems. Researchers have extended and refined IPOG, with
variations like IPOG-D, which considers domain constraints.
The efficiency and effectiveness of IPOG in uncovering
defects and ensuring comprehensive test coverage make it a
valuable asset in the field of software testing, demonstrating
its relevance in practical testing scenarios (Lei et al., 2007;
Lei et al., 2013).

Analysis of In-Parameter-Order Generation (IPOG):
IPOG operates as a deterministic strategy with support
for interaction levels up to 6. The input configuration is
limited to symbolic representations, precluding the use of
original data in test data generation. However, IPOG does
accommodate non-uniform parameterized values. Notably,
IPOG does not provide support for non-uniform interaction
configurations.

16) Jenny: In 2003, Jenkins [22] introduced a novel
tool for test data generation known as Jenny. According to
Jenkins, Jenny adopts a systematic approach to generating
test data, initially focusing on 1-way coverage, followed by
2-way, 3-way, and extending up to the user-defined t-way.
After generating each level of coverage, such as 1-way or
2-way, Jenny conducts checks to ensure that all interactions
up to the specified level have been covered. This sequential
strategy allows users to define the desired t-way coverage,
and Jenny subsequently verifies the completeness of the
generated test data in accordance with the specified coverage
criteria.

Analysis Jenny: Jenny consistently generates the same
number of test data, indicating a deterministic nature. In
terms of interaction level, Jenny can accommodate ’t’ up
to 8. However, when it comes to input configuration, Jenny
does not support the inclusion of original input in the test
data generation process. Despite this limitation, Jenny is
capable of handling non-uniform values. It is important to
note that Jenny does not provide support for non-uniform
interaction configurations.

17) GTway: In 2009, Klaib et al. [25] introduced an
innovative test data generation strategy based on backtrack-
ing. This approach utilizes the fundamental principles of
In-Parameter-Order (IPO) to meticulously select an optimal
test data set that covers essential interactions. Once the
initial interactions are comprehensively covered, the strategy
employs a backtracking algorithm to systematically choose
additional test data sets, ensuring a thorough exploration
of the input space. Klaib’s contribution also includes the
incorporation of automation support for test data execution,
enhancing the efficiency and practicality of the proposed

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 24



strategy.
Analysis on GTway: Through our analysis, we have

determined that GTway can accommodate a substantial 12
levels of interaction. The input configuration for GTway is
versatile, allowing for the use of both symbolic and real data.
Additionally, GTway demonstrates support for non-uniform
parameterized values. However, it’s important to note that
GTway does not provide support for non-uniform interaction
configurations.

18) MTTG: In 2014, Khandakar et al. [27] introduced a
novel test data generation strategy named MTTG, based on
a kid card approach. This strategy begins by establishing
parameter interactions determined by the interaction level
’t’. The identified interactions serve as foundational search
criteria for generating test data. MTTG relies on one ’t’ level
interaction to explore and discover other interactions of the
same level, effectively producing test data. Notably, MTTG
is characterized by its minimal complexity, as it involves
almost no searching techniques. Comparative results high-
light the efficiency of MTTG, showcasing a remarkable 90%
reduction in test data generation time.

Analysis on MTTG: While MTTG can generate efficient
test data within a time frame, it often falls short in producing
an optimal test data set in terms of size. Due to the absence
of exhaustive searching, this strategy demonstrates the ability
to support up to 30 interaction levels. MTTG is versatile
in supporting both index values and real values in input
configurations. Furthermore, it accommodates both uniform
and non-uniform values. However, it is important to note
that MTTG lacks the capability to support non-uniform
interaction levels.

19) PSTG: In 2010, Bestoun et al. [26] introduced a
pioneering test data generation strategy termed PSTG, uti-
lizing a particle swarm-based approach. This innovative
strategy draws inspiration from the heuristic search behavior
observed in swarms as they forage for food within a search
space. PSTG harnesses the principles of particle swarm
optimization to navigate the test data generation process. The
utilization of this heuristic search approach allows PSTG
to effectively explore the solution space, mimicking the
randomized and cooperative nature of swarm behavior.

Analysis on PSTG: Based on our analysis, PSTG is
characterized by an extended duration for generating test
data sets and is constrained to t = 6. The input data for
PSTG is restricted to symbolic values, without support
for real data. Despite this limitation, PSTG is capable of
handling both uniform and non-uniform values. Furthermore,
PSTG operates as a non-deterministic strategy. However, it
is essential to note that PSTG does not provide support for
non-uniform interaction configurations.

20) EasyA: In 2012, Khandakar et al.[34] introduced
EasyA, a matrix-based test data generator that offers a
streamlined approach to test data generation with lower
complexity compared to alternative strategies. The method-
ology employed by EasyA involves the utilization of distinct

algorithms, specifically the ’even algorithm’ for one set of
input configurations and the ’odd algorithm’ for another
set of input configurations. EasyA systematically covers
all pairs, and once this criterion is met, the corresponding
test data is seamlessly integrated into the final test data
set. The matrix-based structure of EasyA contributes to its
efficiency in managing the complexity inherent in the test
data generation process.

Analysis on EasyA: Due to its reliance on the ’odd’
and ’even’ algorithm, EasyA is confined to supporting only
uniform parameterized values. Operating as a deterministic
strategy, EasyA is, however, restricted to pairwise test data
generation. Notably, EasyA does not offer support for non-
uniform interaction configurations.

21) PS2Way: In 2011, Khandakar et al. [33] presented
a pioneering approach known as PS2Way, which revolves
around a pair search strategy for optimizing test data sets.
This innovative methodology involves the exploration of
diverse input values to identify high-coverage pairs crucial
for constructing an optimal test data set. PS2Way initiates
the process by generating parameter pairs, followed by the
generation of corresponding value pairs. The selection of
pairs is based on their coverage of the highest number of
interaction levels, ultimately forming the foundation of the
final test data set. To address uncovered pairs, the strategy
employs an ’Adjusting’ algorithm, strategically choosing
additional favorable pairs to enhance the completeness of
the final test data.

Analysis on PS2Way: The analysis indicates that PS2Way
operates as a non-deterministic strategy and is restricted to
pairwise test data generation. PS2Way exhibits versatility
in utilizing both symbolic and real data as part of the test
data generation process. Additionally, it has the capability
to support non-uniform values. However, it is important to
note that PS2Way does not extend support to non-uniform
interaction configurations.

22) SITG: Khandaka at. al (2016) [36] proposes a com-
binatorial testing tool, known as SICT (Swarm Intelligence
Combinatorial Testing), that is effective and efficient in
solving combinatorial optimisation problems related to the
generation of test data. SICT consists of five strategies
that solve different components of the test data generation
problems: SITG and mSITG (modified SITG) generate op-
timal number of test data; SISEQ and mSISEQ (modified
SISEQ) generate an optimal number of test sequences; and
finally, SITGU (SITG Utility) supports data constraints,
mixed interaction of input data, and non-uniform parameters.

Analysis on SITG: The strategies proposed by Khandakar
at. al. supports data constraints, mixed interaction of input
data, and non-uniform parameters. These strategies utilise a
swarm intelligence based heuristic search, which is useful
in terms of producing an optimal result.

III. SUMMARY OF LITERATURE REVIEW

Diverging from conventional reviews, a Systematic Lit-
erature Review (SLR) represents a methodical approach

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 25



for gathering and summarizing empirical findings derived
from existing literature. In essence, it serves as a reliable,
auditable, and rigorous process designed to unveil the current
state of research within a specific domain. The systematic
nature of an SLR ensures a comprehensive exploration
and synthesis of relevant literature, contributing to a more
insightful understanding of the subject matter. In our study
we found a total summary of almost all existing strategies
in a tabular form.

The overview provided in Figure 7 summarizes the various
strategies discussed earlier in tabular form. The table reveals
a common limitation across most strategies, which is their
focus on 2 to 3-way interaction levels. Notably, MTTG
demonstrates support for the highest ’t’ with only GTway
and Jenny accommodating higher ’t’ levels. All strategies
uniformly support index-based input configurations, but
nearly half do not extend this support to real data in input
configurations. While a majority of the strategies facilitate
non-uniform values, it is noteworthy that none of them
caters to non-uniform interactions. In our system analysis,
we delve into the challenges inherent in this research, a topic
elaborated on in the subsequent section.

Fig. 7: Comparison of different strategies

IV. RESEARCH DISCUSSIONS AND SUGGESTIONS

The preceding section highlights that the majority of
strategies endorse non-uniform values. However, few strate-
gies extend support for non-uniform interaction, and none
encompass meta-data such as voice or images as input.

Consequently, there arises a need for an innovative strategy
that not only supports non-uniform interaction but also
accommodates meta-data—an essential motivation behind
our current research. Building upon this motivation and the
insights gleaned from prior literature reviews, we delve into
the exploration of the following research questions [9, 16-
18,26-29]:

• What is the optimal and smaller set of test data to
choose over the large dataset? i.e. which strategy to
choose among all strategies, that can produce optimal
test data set.

• Which test data generation strategy to choose in terms
of complexity? i.e. which strategy is the best in terms
of time and space.

• What is the optimal data to choose in different inter-
actions to maximize the testing coverage? i.e. which
interaction level should we select in case of non-
uniform interactions exist.

Much effort has been expended to optimize the Combinato-
rial Explosion Problem (CEP) principal through traditional
computing analysis over the past decade [16-18, 20]. How-
ever, through parallelization, CEP may be alleviated, but the
development of complex software and hardware still poses
the same question to the researchers.

V. CONCLUSION

development, hence is very profitable. Testing is no longer
an additional activity but integral part of software develop-
ment life cycle (SDLD). Emphasizing on the development
of techniques to reduce test cases actually helps in the
orderly execution of test cases based on the functions or
performances of the target (amount of coverage, execution
time, and cost). In this paper, a survey was made on the
existing test case generation techniques with their internal
details. This study reveals the techniques used in selecting
the optimal test cases, and a group of previous works was
addressed and compared among them. After reading all the
selected research in full, the following was concluded: First,
from the review of the works, all the similarity was identified
and was summarized. Second, from all the existing testing
techniques the dissimilarity was identified. Thirdly all the
existing testing was analysed for the drawbacks of each
techniques was identified and Finally all the findings were
summarized in a tabular form to see the research gap at
a glance. Moreover the most widely used in determining
the precedence of test cases, as well as the execution time
and the amount of error coverage are largely identified to
use as a measure for evaluating test cases. Observing from
the summary table it becomes clear that the use of artificial
intelligence and support of meta-data is the future research
area in developing test case optimization technique devel-
opment. Although in NP-hard, it is impossible to develop
a mathematical model to generate a polynomial result, our
future works also involves in finding a test data generation
model.

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 26



REFERENCES

[1] Ammann P. and Offutt J., Introduction to Software
Testing, Cambridge University Press, 2008.

[2] Garousi, Vahid, and Junji Zhi. ”A survey of software
testing practices in Canada.” Journal of Systems and
Software 86, no. 5 (2013): 1354-1376.

[3] Lima, Rui, António Miguel Rosado da Cruz, and Jorge
Ribeiro. ”Artificial intelligence applied to software test-
ing: A literature review.” In 2020 15th Iberian Confer-
ence on Information Systems and Technologies (CISTI),
pp. 1-6. IEEE, 2020.

[4] Y. Cui, L. Li, and S. Yao (2009). A New strategy for
pairwise test case generation. 3rd international Sym-
posium on Intelligent Information Technology Appli-
cation.

[5] Khandakar Rabbi, Rafiqul Islam, QuaziMamun and
Mohammed Golam Kaosar (2014). MTTG: An Efficient
Technique for Test Data Generation. 8th International
Conference on Software, Knowledge, Information Man-
agement and Applications.

[6] Yan, J. & Zhang, J. (2008) A Backtracking Search Tool
for Constructing Combinatorial Test Suites. Journal of
Systems and Software – Elsevier.

[7] Hartman, Alan, and Leonid Raskin. ”Problems and
algorithms for covering arrays.” Discrete Mathematics
284, no. 1-3 (2004): 149-156.

[8] Yu, Linbin, Yu Lei, Raghu N. Kacker, D. Richard
Kuhn, and James Lawrence. ”Efficient algorithms for
t-way test sequence generation.” In 2012 IEEE 17th
International Conference on Engineering of Complex
Computer Systems, pp. 220-229. IEEE, 2012.

[9] Yan, J. & Zhang, J. (2008) A Backtracking Search Tool
for Constructing Combinatorial Test Suites. Journal of
Systems and Software – Elsevier.

[10] Chateauneuf, M. &Kreher, D. (2002) On the State of
Strength-Three Covering Arrays. Journal of Combina-
torial Designs.

[11] Colbourn, C. J., Martirosyan, S. S., Mullen, G. L.,
Shasha, D., Sherwood, G. B. &Yucas, J. L. (2005)
Products of Mixed Covering Arrays of Strength Two.
Journal of Combinatorial Designs.

[12] Williams, A. W. (2000) Determination of Test Con-
figurations for Pair-wise Interaction Coverage. Proc.
of the 13th International Conference on Testing of
Communicating Systems.

[13] Hartman, A. &Raskin, L. (2004) Combinatorial Test
Services [Online]. [Accessed on March 2015]. Available
from: https://www.research.ibm.com/haifa/projects/ ver-
ification/mdt/papers/CTSUserDocumentation.pdf.

[14] Bach, J. (2004) ALLPAIRS Test Generation Tool,

Version 1.2.1. [Online]. [Accessed on March 2015].
Available from: http://www.satisfice.com/tools.shtml.

[15] Ellims, M., Ince, D. &Petre, M. (2008) AETG vs. Man:
an Assessment of the Effectiveness of Combinatorial
Test Data Generation. UK, in Technical Report, De-
partment of Computing, Faculty of Mathematics and
Computing, Open University.

[16] Cohen, M. B., Dwyer, M. B. & Shi, J. (2007) Ex-
ploiting Constraint Solving History to Construct Inter-
action Test Suites. Proc. of the Testing: Academic and
Industrial Conference Practice and Research Techniques
- MUTATION, 2007. UK, IEEE Computer Society.

[17] Yu-Wen, T. &Aldiwan, W. S. (2000) Automating Test
Case Generation for the New Generation Mission Soft-
ware System. Proc. of the IEEE Aerospace Conference.

[18] Cohen, M. B. (2004) Designing Test Suites for
Software Interaction Testing. Computer Science. New
Zealand, University of Auckland.

[19] T. Shiba, T. Tsuchiya, and T. Kikuno (2004). Using
Artificial Life Techniques to Generate Test Cases for
Combinatorial Testing. 28th Annual International Com-
puter Software and Applications Conference.

[20] Forbes, M., Lawrence, J., Lei, Y., Kacker, R. N. &
Kuhn, D. R. (2008) Refining the In-Parameter-Order
Strategy for Constructing Covering Arrays. NIST Jour-
nal of Research.

[21] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, J. Lawrence
(2007). IPOG: A general strategy for t-way software
testing. 14th Annual IEEE International Conference and
Workshops on the Engineering and Computer-Based
Systems.

[22] Jenny, Available at: http://www.burtleburtle.net/bob/math/.
(Last access date: 27th Sep. 2010).

[23] TVG, Available at: http://sourceforge.net/projects/tvg.
(Last access date: 27th Sep. 2010).

[24] Hartman, A. &Raskin, L. (2004) Problems and Al-
gorithms for Covering Arrays. Discrete Mathematics-
Elsevier.

[25] Kamal Z. Zamli, Mohammad F.J. Klaib, Mohammed
I. Younis, Nor Ashidi Mat Isa, Rusli Abdullah (2009).
Design and implementation of a t-way test data gen-
eration strategy with automated execution tool support.
Information Sciences, Elsevier.

[26] Ahmed, B. S, Zamli, K. Z. (2010). PSTG: A T-Way
Strategy Adopting Particle Swarm Optimization. Mathe-
matical/Analytical Modelling and Computer Simulation
(AMS).

[27] Khandakar Rabbi, Rafiqul Islam, Quazi Mamun and
Mohammed Golam Kaosar (2014). MTTG: An Efficient
Technique for Test Data Generation. 8th International
Conference on Software, Knowledge, Information Man-

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 27



agement and Applications.

[28] SabiraKhatun, KhandakarFazley Rabbi, CheYa-
hayaYaakub, Mohammad FJ Klaib, Mohammad
Masroor Ahmed (2011). PS2Way: An Efficient Pairwise
Search Approach for Test Data Generation. Software
Engineering and Computer Systems, Springer Berlin
Heidelberg.

[29] KhandakarFazley Rabbi, SabiraKhatun, CheYa-
hayaYaakub, Mohammad FJ Klaib (2011). EasyA: Easy
and Effective Way to Generate Pairwise Test Data.
2011 Third International Conference on Computational
Intelligence, Communication Systems and Networks.

[30] Hourani, Hussam, Ahmad Hammad, and Mohammad
Lafi. ”The impact of artificial intelligence on soft-
ware testing.” In 2019 IEEE Jordan International Joint
Conference on Electrical Engineering and Information
Technology (JEEIT), pp. 565-570. IEEE, 2019.

[31] Grindal, Mats, Jeff Offutt, and Sten F. Andler. ”Com-
bination testing strategies: a survey.” Software Testing,
Verification and Reliability 15, no. 3 (2005): 167-199.

[32] Cadar, Cristian, Vijay Ganesh, Peter M. Pawlowski,
David L. Dill, and Dawson R. Engler. ”EXE: Automati-
cally generating inputs of death.” ACM Transactions on
Information and System Security (TISSEC) 12, no. 2
(2008): 1-38.

[33] Arcuri, Andrea, and Lionel Briand. ”A practical guide
for using statistical tests to assess randomized algo-
rithms in software engineering.” In Proceedings of the
33rd international conference on software engineering,
pp. 1-10. 2011.

[34] Khatun, Sabira, Khandakar Fazley Rabbi, Che Yahaya
Yaakub, Mohammad FJ Klaib, and Mohammad Masroor
Ahmed. ”PS2Way: an efficient pairwise search approach
for test data generation.” In Software Engineering and
Computer Systems: Second International Conference,
ICSECS 2011, Kuantan, Pahang, Malaysia, June 27-
29, 2011, Proceedings, Part III 2, pp. 99-108. Springer
Berlin Heidelberg, 2011.

[35] Rabbi, Khandakar Fazley, Abul Hashem Beg, and Tutut
Herawan. ”MT2Way: A novel strategy for pair-wise test
data generation.” In Computational Intelligence and In-
telligent Systems: 6th International Symposium, ISICA
2012, Wuhan, China, October 27-28, 2012. Proceedings,
pp. 180-191. Springer Berlin Heidelberg, 2012.

[36] Dorigo, Marco, Vittorio Maniezzo, and Alberto Col-
orni. ”The ant system: An autocatalytic optimizing
process.” (1991).

[37] Rabbi, Khandakar. ”Combinatorial testing
strategies based on swarm intelligence.” (2017).
https://researchoutput.csu.edu.au/en/publications/
combinatorial-testing-strategies-based-on-swarm-
intelligence

Open Access Journal on Engineering Applications (OAJEA)
https://oajea.hafizlab.com

ISSN: Not Available
Volume No: 01, Issue No: 01, Page: 18-28

Page 28


